Highest Common Factor of 304, 832, 152, 50 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 304, 832, 152, 50 i.e. 2 the largest integer that leaves a remainder zero for all numbers.

HCF of 304, 832, 152, 50 is 2 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 304, 832, 152, 50 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 304, 832, 152, 50 is 2.

HCF(304, 832, 152, 50) = 2

HCF of 304, 832, 152, 50 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 304, 832, 152, 50 is 2.

Highest Common Factor of 304,832,152,50 using Euclid's algorithm

Highest Common Factor of 304,832,152,50 is 2

Step 1: Since 832 > 304, we apply the division lemma to 832 and 304, to get

832 = 304 x 2 + 224

Step 2: Since the reminder 304 ≠ 0, we apply division lemma to 224 and 304, to get

304 = 224 x 1 + 80

Step 3: We consider the new divisor 224 and the new remainder 80, and apply the division lemma to get

224 = 80 x 2 + 64

We consider the new divisor 80 and the new remainder 64,and apply the division lemma to get

80 = 64 x 1 + 16

We consider the new divisor 64 and the new remainder 16,and apply the division lemma to get

64 = 16 x 4 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 16, the HCF of 304 and 832 is 16

Notice that 16 = HCF(64,16) = HCF(80,64) = HCF(224,80) = HCF(304,224) = HCF(832,304) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 152 > 16, we apply the division lemma to 152 and 16, to get

152 = 16 x 9 + 8

Step 2: Since the reminder 16 ≠ 0, we apply division lemma to 8 and 16, to get

16 = 8 x 2 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 8, the HCF of 16 and 152 is 8

Notice that 8 = HCF(16,8) = HCF(152,16) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 50 > 8, we apply the division lemma to 50 and 8, to get

50 = 8 x 6 + 2

Step 2: Since the reminder 8 ≠ 0, we apply division lemma to 2 and 8, to get

8 = 2 x 4 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 2, the HCF of 8 and 50 is 2

Notice that 2 = HCF(8,2) = HCF(50,8) .

HCF using Euclid's Algorithm Calculation Examples

Frequently Asked Questions on HCF of 304, 832, 152, 50 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 304, 832, 152, 50?

Answer: HCF of 304, 832, 152, 50 is 2 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 304, 832, 152, 50 using Euclid's Algorithm?

Answer: For arbitrary numbers 304, 832, 152, 50 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.