Highest Common Factor of 306, 252, 223, 413 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 306, 252, 223, 413 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 306, 252, 223, 413 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 306, 252, 223, 413 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 306, 252, 223, 413 is 1.

HCF(306, 252, 223, 413) = 1

HCF of 306, 252, 223, 413 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 306, 252, 223, 413 is 1.

Highest Common Factor of 306,252,223,413 using Euclid's algorithm

Highest Common Factor of 306,252,223,413 is 1

Step 1: Since 306 > 252, we apply the division lemma to 306 and 252, to get

306 = 252 x 1 + 54

Step 2: Since the reminder 252 ≠ 0, we apply division lemma to 54 and 252, to get

252 = 54 x 4 + 36

Step 3: We consider the new divisor 54 and the new remainder 36, and apply the division lemma to get

54 = 36 x 1 + 18

We consider the new divisor 36 and the new remainder 18, and apply the division lemma to get

36 = 18 x 2 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 18, the HCF of 306 and 252 is 18

Notice that 18 = HCF(36,18) = HCF(54,36) = HCF(252,54) = HCF(306,252) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 223 > 18, we apply the division lemma to 223 and 18, to get

223 = 18 x 12 + 7

Step 2: Since the reminder 18 ≠ 0, we apply division lemma to 7 and 18, to get

18 = 7 x 2 + 4

Step 3: We consider the new divisor 7 and the new remainder 4, and apply the division lemma to get

7 = 4 x 1 + 3

We consider the new divisor 4 and the new remainder 3,and apply the division lemma to get

4 = 3 x 1 + 1

We consider the new divisor 3 and the new remainder 1,and apply the division lemma to get

3 = 1 x 3 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 18 and 223 is 1

Notice that 1 = HCF(3,1) = HCF(4,3) = HCF(7,4) = HCF(18,7) = HCF(223,18) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 413 > 1, we apply the division lemma to 413 and 1, to get

413 = 1 x 413 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 1 and 413 is 1

Notice that 1 = HCF(413,1) .

HCF using Euclid's Algorithm Calculation Examples

Frequently Asked Questions on HCF of 306, 252, 223, 413 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 306, 252, 223, 413?

Answer: HCF of 306, 252, 223, 413 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 306, 252, 223, 413 using Euclid's Algorithm?

Answer: For arbitrary numbers 306, 252, 223, 413 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.