Highest Common Factor of 3063, 8207 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 3063, 8207 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 3063, 8207 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 3063, 8207 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 3063, 8207 is 1.

HCF(3063, 8207) = 1

HCF of 3063, 8207 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 3063, 8207 is 1.

Highest Common Factor of 3063,8207 using Euclid's algorithm

Highest Common Factor of 3063,8207 is 1

Step 1: Since 8207 > 3063, we apply the division lemma to 8207 and 3063, to get

8207 = 3063 x 2 + 2081

Step 2: Since the reminder 3063 ≠ 0, we apply division lemma to 2081 and 3063, to get

3063 = 2081 x 1 + 982

Step 3: We consider the new divisor 2081 and the new remainder 982, and apply the division lemma to get

2081 = 982 x 2 + 117

We consider the new divisor 982 and the new remainder 117,and apply the division lemma to get

982 = 117 x 8 + 46

We consider the new divisor 117 and the new remainder 46,and apply the division lemma to get

117 = 46 x 2 + 25

We consider the new divisor 46 and the new remainder 25,and apply the division lemma to get

46 = 25 x 1 + 21

We consider the new divisor 25 and the new remainder 21,and apply the division lemma to get

25 = 21 x 1 + 4

We consider the new divisor 21 and the new remainder 4,and apply the division lemma to get

21 = 4 x 5 + 1

We consider the new divisor 4 and the new remainder 1,and apply the division lemma to get

4 = 1 x 4 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 3063 and 8207 is 1

Notice that 1 = HCF(4,1) = HCF(21,4) = HCF(25,21) = HCF(46,25) = HCF(117,46) = HCF(982,117) = HCF(2081,982) = HCF(3063,2081) = HCF(8207,3063) .

HCF using Euclid's Algorithm Calculation Examples

Here are some samples of HCF using Euclid's Algorithm calculations.

Frequently Asked Questions on HCF of 3063, 8207 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 3063, 8207?

Answer: HCF of 3063, 8207 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 3063, 8207 using Euclid's Algorithm?

Answer: For arbitrary numbers 3063, 8207 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.