Created By : Jatin Gogia
Reviewed By : Rajasekhar Valipishetty
Last Updated : Apr 06, 2023
HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 308, 681, 45, 119 i.e. 1 the largest integer that leaves a remainder zero for all numbers.
HCF of 308, 681, 45, 119 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.
Consider we have numbers 308, 681, 45, 119 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b
Highest common factor (HCF) of 308, 681, 45, 119 is 1.
HCF(308, 681, 45, 119) = 1
Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.
Highest common factor (HCF) of 308, 681, 45, 119 is 1.
Step 1: Since 681 > 308, we apply the division lemma to 681 and 308, to get
681 = 308 x 2 + 65
Step 2: Since the reminder 308 ≠ 0, we apply division lemma to 65 and 308, to get
308 = 65 x 4 + 48
Step 3: We consider the new divisor 65 and the new remainder 48, and apply the division lemma to get
65 = 48 x 1 + 17
We consider the new divisor 48 and the new remainder 17,and apply the division lemma to get
48 = 17 x 2 + 14
We consider the new divisor 17 and the new remainder 14,and apply the division lemma to get
17 = 14 x 1 + 3
We consider the new divisor 14 and the new remainder 3,and apply the division lemma to get
14 = 3 x 4 + 2
We consider the new divisor 3 and the new remainder 2,and apply the division lemma to get
3 = 2 x 1 + 1
We consider the new divisor 2 and the new remainder 1,and apply the division lemma to get
2 = 1 x 2 + 0
The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 308 and 681 is 1
Notice that 1 = HCF(2,1) = HCF(3,2) = HCF(14,3) = HCF(17,14) = HCF(48,17) = HCF(65,48) = HCF(308,65) = HCF(681,308) .
We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma
Step 1: Since 45 > 1, we apply the division lemma to 45 and 1, to get
45 = 1 x 45 + 0
The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 1 and 45 is 1
Notice that 1 = HCF(45,1) .
We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma
Step 1: Since 119 > 1, we apply the division lemma to 119 and 1, to get
119 = 1 x 119 + 0
The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 1 and 119 is 1
Notice that 1 = HCF(119,1) .
Here are some samples of HCF using Euclid's Algorithm calculations.
1. What is the Euclid division algorithm?
Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.
2. what is the HCF of 308, 681, 45, 119?
Answer: HCF of 308, 681, 45, 119 is 1 the largest number that divides all the numbers leaving a remainder zero.
3. How to find HCF of 308, 681, 45, 119 using Euclid's Algorithm?
Answer: For arbitrary numbers 308, 681, 45, 119 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.