Created By : Jatin Gogia
Reviewed By : Rajasekhar Valipishetty
Last Updated : Apr 06, 2023
HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 3088, 7084 i.e. 4 the largest integer that leaves a remainder zero for all numbers.
HCF of 3088, 7084 is 4 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.
Consider we have numbers 3088, 7084 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b
Highest common factor (HCF) of 3088, 7084 is 4.
HCF(3088, 7084) = 4
Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.
Highest common factor (HCF) of 3088, 7084 is 4.
Step 1: Since 7084 > 3088, we apply the division lemma to 7084 and 3088, to get
7084 = 3088 x 2 + 908
Step 2: Since the reminder 3088 ≠ 0, we apply division lemma to 908 and 3088, to get
3088 = 908 x 3 + 364
Step 3: We consider the new divisor 908 and the new remainder 364, and apply the division lemma to get
908 = 364 x 2 + 180
We consider the new divisor 364 and the new remainder 180,and apply the division lemma to get
364 = 180 x 2 + 4
We consider the new divisor 180 and the new remainder 4,and apply the division lemma to get
180 = 4 x 45 + 0
The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 4, the HCF of 3088 and 7084 is 4
Notice that 4 = HCF(180,4) = HCF(364,180) = HCF(908,364) = HCF(3088,908) = HCF(7084,3088) .
Here are some samples of HCF using Euclid's Algorithm calculations.
1. What is the Euclid division algorithm?
Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.
2. what is the HCF of 3088, 7084?
Answer: HCF of 3088, 7084 is 4 the largest number that divides all the numbers leaving a remainder zero.
3. How to find HCF of 3088, 7084 using Euclid's Algorithm?
Answer: For arbitrary numbers 3088, 7084 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.