Created By : Jatin Gogia
Reviewed By : Rajasekhar Valipishetty
Last Updated : Apr 06, 2023
HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 309, 8298 i.e. 3 the largest integer that leaves a remainder zero for all numbers.
HCF of 309, 8298 is 3 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.
Consider we have numbers 309, 8298 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b
Highest common factor (HCF) of 309, 8298 is 3.
HCF(309, 8298) = 3
Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.
Highest common factor (HCF) of 309, 8298 is 3.
Step 1: Since 8298 > 309, we apply the division lemma to 8298 and 309, to get
8298 = 309 x 26 + 264
Step 2: Since the reminder 309 ≠ 0, we apply division lemma to 264 and 309, to get
309 = 264 x 1 + 45
Step 3: We consider the new divisor 264 and the new remainder 45, and apply the division lemma to get
264 = 45 x 5 + 39
We consider the new divisor 45 and the new remainder 39,and apply the division lemma to get
45 = 39 x 1 + 6
We consider the new divisor 39 and the new remainder 6,and apply the division lemma to get
39 = 6 x 6 + 3
We consider the new divisor 6 and the new remainder 3,and apply the division lemma to get
6 = 3 x 2 + 0
The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 3, the HCF of 309 and 8298 is 3
Notice that 3 = HCF(6,3) = HCF(39,6) = HCF(45,39) = HCF(264,45) = HCF(309,264) = HCF(8298,309) .
Here are some samples of HCF using Euclid's Algorithm calculations.
1. What is the Euclid division algorithm?
Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.
2. what is the HCF of 309, 8298?
Answer: HCF of 309, 8298 is 3 the largest number that divides all the numbers leaving a remainder zero.
3. How to find HCF of 309, 8298 using Euclid's Algorithm?
Answer: For arbitrary numbers 309, 8298 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.