Highest Common Factor of 314, 1432 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 314, 1432 i.e. 2 the largest integer that leaves a remainder zero for all numbers.

HCF of 314, 1432 is 2 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 314, 1432 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 314, 1432 is 2.

HCF(314, 1432) = 2

HCF of 314, 1432 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 314, 1432 is 2.

Highest Common Factor of 314,1432 using Euclid's algorithm

Highest Common Factor of 314,1432 is 2

Step 1: Since 1432 > 314, we apply the division lemma to 1432 and 314, to get

1432 = 314 x 4 + 176

Step 2: Since the reminder 314 ≠ 0, we apply division lemma to 176 and 314, to get

314 = 176 x 1 + 138

Step 3: We consider the new divisor 176 and the new remainder 138, and apply the division lemma to get

176 = 138 x 1 + 38

We consider the new divisor 138 and the new remainder 38,and apply the division lemma to get

138 = 38 x 3 + 24

We consider the new divisor 38 and the new remainder 24,and apply the division lemma to get

38 = 24 x 1 + 14

We consider the new divisor 24 and the new remainder 14,and apply the division lemma to get

24 = 14 x 1 + 10

We consider the new divisor 14 and the new remainder 10,and apply the division lemma to get

14 = 10 x 1 + 4

We consider the new divisor 10 and the new remainder 4,and apply the division lemma to get

10 = 4 x 2 + 2

We consider the new divisor 4 and the new remainder 2,and apply the division lemma to get

4 = 2 x 2 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 2, the HCF of 314 and 1432 is 2

Notice that 2 = HCF(4,2) = HCF(10,4) = HCF(14,10) = HCF(24,14) = HCF(38,24) = HCF(138,38) = HCF(176,138) = HCF(314,176) = HCF(1432,314) .

HCF using Euclid's Algorithm Calculation Examples

Here are some samples of HCF using Euclid's Algorithm calculations.

Frequently Asked Questions on HCF of 314, 1432 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 314, 1432?

Answer: HCF of 314, 1432 is 2 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 314, 1432 using Euclid's Algorithm?

Answer: For arbitrary numbers 314, 1432 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.