Highest Common Factor of 315, 898, 764, 610 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 315, 898, 764, 610 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 315, 898, 764, 610 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 315, 898, 764, 610 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 315, 898, 764, 610 is 1.

HCF(315, 898, 764, 610) = 1

HCF of 315, 898, 764, 610 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 315, 898, 764, 610 is 1.

Highest Common Factor of 315,898,764,610 using Euclid's algorithm

Highest Common Factor of 315,898,764,610 is 1

Step 1: Since 898 > 315, we apply the division lemma to 898 and 315, to get

898 = 315 x 2 + 268

Step 2: Since the reminder 315 ≠ 0, we apply division lemma to 268 and 315, to get

315 = 268 x 1 + 47

Step 3: We consider the new divisor 268 and the new remainder 47, and apply the division lemma to get

268 = 47 x 5 + 33

We consider the new divisor 47 and the new remainder 33,and apply the division lemma to get

47 = 33 x 1 + 14

We consider the new divisor 33 and the new remainder 14,and apply the division lemma to get

33 = 14 x 2 + 5

We consider the new divisor 14 and the new remainder 5,and apply the division lemma to get

14 = 5 x 2 + 4

We consider the new divisor 5 and the new remainder 4,and apply the division lemma to get

5 = 4 x 1 + 1

We consider the new divisor 4 and the new remainder 1,and apply the division lemma to get

4 = 1 x 4 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 315 and 898 is 1

Notice that 1 = HCF(4,1) = HCF(5,4) = HCF(14,5) = HCF(33,14) = HCF(47,33) = HCF(268,47) = HCF(315,268) = HCF(898,315) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 764 > 1, we apply the division lemma to 764 and 1, to get

764 = 1 x 764 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 1 and 764 is 1

Notice that 1 = HCF(764,1) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 610 > 1, we apply the division lemma to 610 and 1, to get

610 = 1 x 610 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 1 and 610 is 1

Notice that 1 = HCF(610,1) .

HCF using Euclid's Algorithm Calculation Examples

Frequently Asked Questions on HCF of 315, 898, 764, 610 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 315, 898, 764, 610?

Answer: HCF of 315, 898, 764, 610 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 315, 898, 764, 610 using Euclid's Algorithm?

Answer: For arbitrary numbers 315, 898, 764, 610 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.