Highest Common Factor of 3166, 7006 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 3166, 7006 i.e. 2 the largest integer that leaves a remainder zero for all numbers.

HCF of 3166, 7006 is 2 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 3166, 7006 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 3166, 7006 is 2.

HCF(3166, 7006) = 2

HCF of 3166, 7006 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 3166, 7006 is 2.

Highest Common Factor of 3166,7006 using Euclid's algorithm

Highest Common Factor of 3166,7006 is 2

Step 1: Since 7006 > 3166, we apply the division lemma to 7006 and 3166, to get

7006 = 3166 x 2 + 674

Step 2: Since the reminder 3166 ≠ 0, we apply division lemma to 674 and 3166, to get

3166 = 674 x 4 + 470

Step 3: We consider the new divisor 674 and the new remainder 470, and apply the division lemma to get

674 = 470 x 1 + 204

We consider the new divisor 470 and the new remainder 204,and apply the division lemma to get

470 = 204 x 2 + 62

We consider the new divisor 204 and the new remainder 62,and apply the division lemma to get

204 = 62 x 3 + 18

We consider the new divisor 62 and the new remainder 18,and apply the division lemma to get

62 = 18 x 3 + 8

We consider the new divisor 18 and the new remainder 8,and apply the division lemma to get

18 = 8 x 2 + 2

We consider the new divisor 8 and the new remainder 2,and apply the division lemma to get

8 = 2 x 4 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 2, the HCF of 3166 and 7006 is 2

Notice that 2 = HCF(8,2) = HCF(18,8) = HCF(62,18) = HCF(204,62) = HCF(470,204) = HCF(674,470) = HCF(3166,674) = HCF(7006,3166) .

HCF using Euclid's Algorithm Calculation Examples

Here are some samples of HCF using Euclid's Algorithm calculations.

Frequently Asked Questions on HCF of 3166, 7006 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 3166, 7006?

Answer: HCF of 3166, 7006 is 2 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 3166, 7006 using Euclid's Algorithm?

Answer: For arbitrary numbers 3166, 7006 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.