Highest Common Factor of 320, 493 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 320, 493 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 320, 493 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 320, 493 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 320, 493 is 1.

HCF(320, 493) = 1

HCF of 320, 493 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 320, 493 is 1.

Highest Common Factor of 320,493 using Euclid's algorithm

Highest Common Factor of 320,493 is 1

Step 1: Since 493 > 320, we apply the division lemma to 493 and 320, to get

493 = 320 x 1 + 173

Step 2: Since the reminder 320 ≠ 0, we apply division lemma to 173 and 320, to get

320 = 173 x 1 + 147

Step 3: We consider the new divisor 173 and the new remainder 147, and apply the division lemma to get

173 = 147 x 1 + 26

We consider the new divisor 147 and the new remainder 26,and apply the division lemma to get

147 = 26 x 5 + 17

We consider the new divisor 26 and the new remainder 17,and apply the division lemma to get

26 = 17 x 1 + 9

We consider the new divisor 17 and the new remainder 9,and apply the division lemma to get

17 = 9 x 1 + 8

We consider the new divisor 9 and the new remainder 8,and apply the division lemma to get

9 = 8 x 1 + 1

We consider the new divisor 8 and the new remainder 1,and apply the division lemma to get

8 = 1 x 8 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 320 and 493 is 1

Notice that 1 = HCF(8,1) = HCF(9,8) = HCF(17,9) = HCF(26,17) = HCF(147,26) = HCF(173,147) = HCF(320,173) = HCF(493,320) .

HCF using Euclid's Algorithm Calculation Examples

Here are some samples of HCF using Euclid's Algorithm calculations.

Frequently Asked Questions on HCF of 320, 493 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 320, 493?

Answer: HCF of 320, 493 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 320, 493 using Euclid's Algorithm?

Answer: For arbitrary numbers 320, 493 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.