Created By : Jatin Gogia
Reviewed By : Rajasekhar Valipishetty
Last Updated : Apr 06, 2023
HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 321, 343, 161, 97 i.e. 1 the largest integer that leaves a remainder zero for all numbers.
HCF of 321, 343, 161, 97 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.
Consider we have numbers 321, 343, 161, 97 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b
Highest common factor (HCF) of 321, 343, 161, 97 is 1.
HCF(321, 343, 161, 97) = 1
Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.
Highest common factor (HCF) of 321, 343, 161, 97 is 1.
Step 1: Since 343 > 321, we apply the division lemma to 343 and 321, to get
343 = 321 x 1 + 22
Step 2: Since the reminder 321 ≠ 0, we apply division lemma to 22 and 321, to get
321 = 22 x 14 + 13
Step 3: We consider the new divisor 22 and the new remainder 13, and apply the division lemma to get
22 = 13 x 1 + 9
We consider the new divisor 13 and the new remainder 9,and apply the division lemma to get
13 = 9 x 1 + 4
We consider the new divisor 9 and the new remainder 4,and apply the division lemma to get
9 = 4 x 2 + 1
We consider the new divisor 4 and the new remainder 1,and apply the division lemma to get
4 = 1 x 4 + 0
The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 321 and 343 is 1
Notice that 1 = HCF(4,1) = HCF(9,4) = HCF(13,9) = HCF(22,13) = HCF(321,22) = HCF(343,321) .
We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma
Step 1: Since 161 > 1, we apply the division lemma to 161 and 1, to get
161 = 1 x 161 + 0
The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 1 and 161 is 1
Notice that 1 = HCF(161,1) .
We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma
Step 1: Since 97 > 1, we apply the division lemma to 97 and 1, to get
97 = 1 x 97 + 0
The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 1 and 97 is 1
Notice that 1 = HCF(97,1) .
Here are some samples of HCF using Euclid's Algorithm calculations.
1. What is the Euclid division algorithm?
Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.
2. what is the HCF of 321, 343, 161, 97?
Answer: HCF of 321, 343, 161, 97 is 1 the largest number that divides all the numbers leaving a remainder zero.
3. How to find HCF of 321, 343, 161, 97 using Euclid's Algorithm?
Answer: For arbitrary numbers 321, 343, 161, 97 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.