Highest Common Factor of 3267, 4004, 96839 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 3267, 4004, 96839 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 3267, 4004, 96839 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 3267, 4004, 96839 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 3267, 4004, 96839 is 1.

HCF(3267, 4004, 96839) = 1

HCF of 3267, 4004, 96839 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 3267, 4004, 96839 is 1.

Highest Common Factor of 3267,4004,96839 using Euclid's algorithm

Highest Common Factor of 3267,4004,96839 is 1

Step 1: Since 4004 > 3267, we apply the division lemma to 4004 and 3267, to get

4004 = 3267 x 1 + 737

Step 2: Since the reminder 3267 ≠ 0, we apply division lemma to 737 and 3267, to get

3267 = 737 x 4 + 319

Step 3: We consider the new divisor 737 and the new remainder 319, and apply the division lemma to get

737 = 319 x 2 + 99

We consider the new divisor 319 and the new remainder 99,and apply the division lemma to get

319 = 99 x 3 + 22

We consider the new divisor 99 and the new remainder 22,and apply the division lemma to get

99 = 22 x 4 + 11

We consider the new divisor 22 and the new remainder 11,and apply the division lemma to get

22 = 11 x 2 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 11, the HCF of 3267 and 4004 is 11

Notice that 11 = HCF(22,11) = HCF(99,22) = HCF(319,99) = HCF(737,319) = HCF(3267,737) = HCF(4004,3267) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 96839 > 11, we apply the division lemma to 96839 and 11, to get

96839 = 11 x 8803 + 6

Step 2: Since the reminder 11 ≠ 0, we apply division lemma to 6 and 11, to get

11 = 6 x 1 + 5

Step 3: We consider the new divisor 6 and the new remainder 5, and apply the division lemma to get

6 = 5 x 1 + 1

We consider the new divisor 5 and the new remainder 1, and apply the division lemma to get

5 = 1 x 5 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 11 and 96839 is 1

Notice that 1 = HCF(5,1) = HCF(6,5) = HCF(11,6) = HCF(96839,11) .

HCF using Euclid's Algorithm Calculation Examples

Frequently Asked Questions on HCF of 3267, 4004, 96839 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 3267, 4004, 96839?

Answer: HCF of 3267, 4004, 96839 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 3267, 4004, 96839 using Euclid's Algorithm?

Answer: For arbitrary numbers 3267, 4004, 96839 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.