Highest Common Factor of 330, 735, 696 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 330, 735, 696 i.e. 3 the largest integer that leaves a remainder zero for all numbers.

HCF of 330, 735, 696 is 3 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 330, 735, 696 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 330, 735, 696 is 3.

HCF(330, 735, 696) = 3

HCF of 330, 735, 696 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 330, 735, 696 is 3.

Highest Common Factor of 330,735,696 using Euclid's algorithm

Highest Common Factor of 330,735,696 is 3

Step 1: Since 735 > 330, we apply the division lemma to 735 and 330, to get

735 = 330 x 2 + 75

Step 2: Since the reminder 330 ≠ 0, we apply division lemma to 75 and 330, to get

330 = 75 x 4 + 30

Step 3: We consider the new divisor 75 and the new remainder 30, and apply the division lemma to get

75 = 30 x 2 + 15

We consider the new divisor 30 and the new remainder 15, and apply the division lemma to get

30 = 15 x 2 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 15, the HCF of 330 and 735 is 15

Notice that 15 = HCF(30,15) = HCF(75,30) = HCF(330,75) = HCF(735,330) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 696 > 15, we apply the division lemma to 696 and 15, to get

696 = 15 x 46 + 6

Step 2: Since the reminder 15 ≠ 0, we apply division lemma to 6 and 15, to get

15 = 6 x 2 + 3

Step 3: We consider the new divisor 6 and the new remainder 3, and apply the division lemma to get

6 = 3 x 2 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 3, the HCF of 15 and 696 is 3

Notice that 3 = HCF(6,3) = HCF(15,6) = HCF(696,15) .

HCF using Euclid's Algorithm Calculation Examples

Here are some samples of HCF using Euclid's Algorithm calculations.

Frequently Asked Questions on HCF of 330, 735, 696 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 330, 735, 696?

Answer: HCF of 330, 735, 696 is 3 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 330, 735, 696 using Euclid's Algorithm?

Answer: For arbitrary numbers 330, 735, 696 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.