Highest Common Factor of 3349, 1383 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 3349, 1383 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 3349, 1383 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 3349, 1383 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 3349, 1383 is 1.

HCF(3349, 1383) = 1

HCF of 3349, 1383 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 3349, 1383 is 1.

Highest Common Factor of 3349,1383 using Euclid's algorithm

Highest Common Factor of 3349,1383 is 1

Step 1: Since 3349 > 1383, we apply the division lemma to 3349 and 1383, to get

3349 = 1383 x 2 + 583

Step 2: Since the reminder 1383 ≠ 0, we apply division lemma to 583 and 1383, to get

1383 = 583 x 2 + 217

Step 3: We consider the new divisor 583 and the new remainder 217, and apply the division lemma to get

583 = 217 x 2 + 149

We consider the new divisor 217 and the new remainder 149,and apply the division lemma to get

217 = 149 x 1 + 68

We consider the new divisor 149 and the new remainder 68,and apply the division lemma to get

149 = 68 x 2 + 13

We consider the new divisor 68 and the new remainder 13,and apply the division lemma to get

68 = 13 x 5 + 3

We consider the new divisor 13 and the new remainder 3,and apply the division lemma to get

13 = 3 x 4 + 1

We consider the new divisor 3 and the new remainder 1,and apply the division lemma to get

3 = 1 x 3 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 3349 and 1383 is 1

Notice that 1 = HCF(3,1) = HCF(13,3) = HCF(68,13) = HCF(149,68) = HCF(217,149) = HCF(583,217) = HCF(1383,583) = HCF(3349,1383) .

HCF using Euclid's Algorithm Calculation Examples

Here are some samples of HCF using Euclid's Algorithm calculations.

Frequently Asked Questions on HCF of 3349, 1383 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 3349, 1383?

Answer: HCF of 3349, 1383 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 3349, 1383 using Euclid's Algorithm?

Answer: For arbitrary numbers 3349, 1383 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.