Highest Common Factor of 3399, 3030 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 3399, 3030 i.e. 3 the largest integer that leaves a remainder zero for all numbers.

HCF of 3399, 3030 is 3 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 3399, 3030 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 3399, 3030 is 3.

HCF(3399, 3030) = 3

HCF of 3399, 3030 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 3399, 3030 is 3.

Highest Common Factor of 3399,3030 using Euclid's algorithm

Highest Common Factor of 3399,3030 is 3

Step 1: Since 3399 > 3030, we apply the division lemma to 3399 and 3030, to get

3399 = 3030 x 1 + 369

Step 2: Since the reminder 3030 ≠ 0, we apply division lemma to 369 and 3030, to get

3030 = 369 x 8 + 78

Step 3: We consider the new divisor 369 and the new remainder 78, and apply the division lemma to get

369 = 78 x 4 + 57

We consider the new divisor 78 and the new remainder 57,and apply the division lemma to get

78 = 57 x 1 + 21

We consider the new divisor 57 and the new remainder 21,and apply the division lemma to get

57 = 21 x 2 + 15

We consider the new divisor 21 and the new remainder 15,and apply the division lemma to get

21 = 15 x 1 + 6

We consider the new divisor 15 and the new remainder 6,and apply the division lemma to get

15 = 6 x 2 + 3

We consider the new divisor 6 and the new remainder 3,and apply the division lemma to get

6 = 3 x 2 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 3, the HCF of 3399 and 3030 is 3

Notice that 3 = HCF(6,3) = HCF(15,6) = HCF(21,15) = HCF(57,21) = HCF(78,57) = HCF(369,78) = HCF(3030,369) = HCF(3399,3030) .

HCF using Euclid's Algorithm Calculation Examples

Here are some samples of HCF using Euclid's Algorithm calculations.

Frequently Asked Questions on HCF of 3399, 3030 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 3399, 3030?

Answer: HCF of 3399, 3030 is 3 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 3399, 3030 using Euclid's Algorithm?

Answer: For arbitrary numbers 3399, 3030 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.