Highest Common Factor of 340, 610 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 340, 610 i.e. 10 the largest integer that leaves a remainder zero for all numbers.

HCF of 340, 610 is 10 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 340, 610 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 340, 610 is 10.

HCF(340, 610) = 10

HCF of 340, 610 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 340, 610 is 10.

Highest Common Factor of 340,610 using Euclid's algorithm

Highest Common Factor of 340,610 is 10

Step 1: Since 610 > 340, we apply the division lemma to 610 and 340, to get

610 = 340 x 1 + 270

Step 2: Since the reminder 340 ≠ 0, we apply division lemma to 270 and 340, to get

340 = 270 x 1 + 70

Step 3: We consider the new divisor 270 and the new remainder 70, and apply the division lemma to get

270 = 70 x 3 + 60

We consider the new divisor 70 and the new remainder 60,and apply the division lemma to get

70 = 60 x 1 + 10

We consider the new divisor 60 and the new remainder 10,and apply the division lemma to get

60 = 10 x 6 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 10, the HCF of 340 and 610 is 10

Notice that 10 = HCF(60,10) = HCF(70,60) = HCF(270,70) = HCF(340,270) = HCF(610,340) .

HCF using Euclid's Algorithm Calculation Examples

Here are some samples of HCF using Euclid's Algorithm calculations.

Frequently Asked Questions on HCF of 340, 610 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 340, 610?

Answer: HCF of 340, 610 is 10 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 340, 610 using Euclid's Algorithm?

Answer: For arbitrary numbers 340, 610 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.