Highest Common Factor of 341, 536 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 341, 536 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 341, 536 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 341, 536 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 341, 536 is 1.

HCF(341, 536) = 1

HCF of 341, 536 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 341, 536 is 1.

Highest Common Factor of 341,536 using Euclid's algorithm

Highest Common Factor of 341,536 is 1

Step 1: Since 536 > 341, we apply the division lemma to 536 and 341, to get

536 = 341 x 1 + 195

Step 2: Since the reminder 341 ≠ 0, we apply division lemma to 195 and 341, to get

341 = 195 x 1 + 146

Step 3: We consider the new divisor 195 and the new remainder 146, and apply the division lemma to get

195 = 146 x 1 + 49

We consider the new divisor 146 and the new remainder 49,and apply the division lemma to get

146 = 49 x 2 + 48

We consider the new divisor 49 and the new remainder 48,and apply the division lemma to get

49 = 48 x 1 + 1

We consider the new divisor 48 and the new remainder 1,and apply the division lemma to get

48 = 1 x 48 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 341 and 536 is 1

Notice that 1 = HCF(48,1) = HCF(49,48) = HCF(146,49) = HCF(195,146) = HCF(341,195) = HCF(536,341) .

HCF using Euclid's Algorithm Calculation Examples

Here are some samples of HCF using Euclid's Algorithm calculations.

Frequently Asked Questions on HCF of 341, 536 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 341, 536?

Answer: HCF of 341, 536 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 341, 536 using Euclid's Algorithm?

Answer: For arbitrary numbers 341, 536 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.