Highest Common Factor of 3421, 6368 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 3421, 6368 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 3421, 6368 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 3421, 6368 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 3421, 6368 is 1.

HCF(3421, 6368) = 1

HCF of 3421, 6368 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 3421, 6368 is 1.

Highest Common Factor of 3421,6368 using Euclid's algorithm

Highest Common Factor of 3421,6368 is 1

Step 1: Since 6368 > 3421, we apply the division lemma to 6368 and 3421, to get

6368 = 3421 x 1 + 2947

Step 2: Since the reminder 3421 ≠ 0, we apply division lemma to 2947 and 3421, to get

3421 = 2947 x 1 + 474

Step 3: We consider the new divisor 2947 and the new remainder 474, and apply the division lemma to get

2947 = 474 x 6 + 103

We consider the new divisor 474 and the new remainder 103,and apply the division lemma to get

474 = 103 x 4 + 62

We consider the new divisor 103 and the new remainder 62,and apply the division lemma to get

103 = 62 x 1 + 41

We consider the new divisor 62 and the new remainder 41,and apply the division lemma to get

62 = 41 x 1 + 21

We consider the new divisor 41 and the new remainder 21,and apply the division lemma to get

41 = 21 x 1 + 20

We consider the new divisor 21 and the new remainder 20,and apply the division lemma to get

21 = 20 x 1 + 1

We consider the new divisor 20 and the new remainder 1,and apply the division lemma to get

20 = 1 x 20 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 3421 and 6368 is 1

Notice that 1 = HCF(20,1) = HCF(21,20) = HCF(41,21) = HCF(62,41) = HCF(103,62) = HCF(474,103) = HCF(2947,474) = HCF(3421,2947) = HCF(6368,3421) .

HCF using Euclid's Algorithm Calculation Examples

Here are some samples of HCF using Euclid's Algorithm calculations.

Frequently Asked Questions on HCF of 3421, 6368 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 3421, 6368?

Answer: HCF of 3421, 6368 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 3421, 6368 using Euclid's Algorithm?

Answer: For arbitrary numbers 3421, 6368 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.