Highest Common Factor of 3438, 9953 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 3438, 9953 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 3438, 9953 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 3438, 9953 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 3438, 9953 is 1.

HCF(3438, 9953) = 1

HCF of 3438, 9953 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 3438, 9953 is 1.

Highest Common Factor of 3438,9953 using Euclid's algorithm

Highest Common Factor of 3438,9953 is 1

Step 1: Since 9953 > 3438, we apply the division lemma to 9953 and 3438, to get

9953 = 3438 x 2 + 3077

Step 2: Since the reminder 3438 ≠ 0, we apply division lemma to 3077 and 3438, to get

3438 = 3077 x 1 + 361

Step 3: We consider the new divisor 3077 and the new remainder 361, and apply the division lemma to get

3077 = 361 x 8 + 189

We consider the new divisor 361 and the new remainder 189,and apply the division lemma to get

361 = 189 x 1 + 172

We consider the new divisor 189 and the new remainder 172,and apply the division lemma to get

189 = 172 x 1 + 17

We consider the new divisor 172 and the new remainder 17,and apply the division lemma to get

172 = 17 x 10 + 2

We consider the new divisor 17 and the new remainder 2,and apply the division lemma to get

17 = 2 x 8 + 1

We consider the new divisor 2 and the new remainder 1,and apply the division lemma to get

2 = 1 x 2 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 3438 and 9953 is 1

Notice that 1 = HCF(2,1) = HCF(17,2) = HCF(172,17) = HCF(189,172) = HCF(361,189) = HCF(3077,361) = HCF(3438,3077) = HCF(9953,3438) .

HCF using Euclid's Algorithm Calculation Examples

Here are some samples of HCF using Euclid's Algorithm calculations.

Frequently Asked Questions on HCF of 3438, 9953 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 3438, 9953?

Answer: HCF of 3438, 9953 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 3438, 9953 using Euclid's Algorithm?

Answer: For arbitrary numbers 3438, 9953 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.