Highest Common Factor of 347, 122, 317, 496 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 347, 122, 317, 496 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 347, 122, 317, 496 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 347, 122, 317, 496 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 347, 122, 317, 496 is 1.

HCF(347, 122, 317, 496) = 1

HCF of 347, 122, 317, 496 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 347, 122, 317, 496 is 1.

Highest Common Factor of 347,122,317,496 using Euclid's algorithm

Highest Common Factor of 347,122,317,496 is 1

Step 1: Since 347 > 122, we apply the division lemma to 347 and 122, to get

347 = 122 x 2 + 103

Step 2: Since the reminder 122 ≠ 0, we apply division lemma to 103 and 122, to get

122 = 103 x 1 + 19

Step 3: We consider the new divisor 103 and the new remainder 19, and apply the division lemma to get

103 = 19 x 5 + 8

We consider the new divisor 19 and the new remainder 8,and apply the division lemma to get

19 = 8 x 2 + 3

We consider the new divisor 8 and the new remainder 3,and apply the division lemma to get

8 = 3 x 2 + 2

We consider the new divisor 3 and the new remainder 2,and apply the division lemma to get

3 = 2 x 1 + 1

We consider the new divisor 2 and the new remainder 1,and apply the division lemma to get

2 = 1 x 2 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 347 and 122 is 1

Notice that 1 = HCF(2,1) = HCF(3,2) = HCF(8,3) = HCF(19,8) = HCF(103,19) = HCF(122,103) = HCF(347,122) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 317 > 1, we apply the division lemma to 317 and 1, to get

317 = 1 x 317 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 1 and 317 is 1

Notice that 1 = HCF(317,1) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 496 > 1, we apply the division lemma to 496 and 1, to get

496 = 1 x 496 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 1 and 496 is 1

Notice that 1 = HCF(496,1) .

HCF using Euclid's Algorithm Calculation Examples

Frequently Asked Questions on HCF of 347, 122, 317, 496 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 347, 122, 317, 496?

Answer: HCF of 347, 122, 317, 496 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 347, 122, 317, 496 using Euclid's Algorithm?

Answer: For arbitrary numbers 347, 122, 317, 496 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.