Created By : Jatin Gogia
Reviewed By : Rajasekhar Valipishetty
Last Updated : Apr 06, 2023
HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 347, 307, 559 i.e. 1 the largest integer that leaves a remainder zero for all numbers.
HCF of 347, 307, 559 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.
Consider we have numbers 347, 307, 559 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b
Highest common factor (HCF) of 347, 307, 559 is 1.
HCF(347, 307, 559) = 1
Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.
Highest common factor (HCF) of 347, 307, 559 is 1.
Step 1: Since 347 > 307, we apply the division lemma to 347 and 307, to get
347 = 307 x 1 + 40
Step 2: Since the reminder 307 ≠ 0, we apply division lemma to 40 and 307, to get
307 = 40 x 7 + 27
Step 3: We consider the new divisor 40 and the new remainder 27, and apply the division lemma to get
40 = 27 x 1 + 13
We consider the new divisor 27 and the new remainder 13,and apply the division lemma to get
27 = 13 x 2 + 1
We consider the new divisor 13 and the new remainder 1,and apply the division lemma to get
13 = 1 x 13 + 0
The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 347 and 307 is 1
Notice that 1 = HCF(13,1) = HCF(27,13) = HCF(40,27) = HCF(307,40) = HCF(347,307) .
We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma
Step 1: Since 559 > 1, we apply the division lemma to 559 and 1, to get
559 = 1 x 559 + 0
The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 1 and 559 is 1
Notice that 1 = HCF(559,1) .
Here are some samples of HCF using Euclid's Algorithm calculations.
1. What is the Euclid division algorithm?
Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.
2. what is the HCF of 347, 307, 559?
Answer: HCF of 347, 307, 559 is 1 the largest number that divides all the numbers leaving a remainder zero.
3. How to find HCF of 347, 307, 559 using Euclid's Algorithm?
Answer: For arbitrary numbers 347, 307, 559 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.