Highest Common Factor of 347, 560, 819 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 347, 560, 819 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 347, 560, 819 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 347, 560, 819 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 347, 560, 819 is 1.

HCF(347, 560, 819) = 1

HCF of 347, 560, 819 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 347, 560, 819 is 1.

Highest Common Factor of 347,560,819 using Euclid's algorithm

Highest Common Factor of 347,560,819 is 1

Step 1: Since 560 > 347, we apply the division lemma to 560 and 347, to get

560 = 347 x 1 + 213

Step 2: Since the reminder 347 ≠ 0, we apply division lemma to 213 and 347, to get

347 = 213 x 1 + 134

Step 3: We consider the new divisor 213 and the new remainder 134, and apply the division lemma to get

213 = 134 x 1 + 79

We consider the new divisor 134 and the new remainder 79,and apply the division lemma to get

134 = 79 x 1 + 55

We consider the new divisor 79 and the new remainder 55,and apply the division lemma to get

79 = 55 x 1 + 24

We consider the new divisor 55 and the new remainder 24,and apply the division lemma to get

55 = 24 x 2 + 7

We consider the new divisor 24 and the new remainder 7,and apply the division lemma to get

24 = 7 x 3 + 3

We consider the new divisor 7 and the new remainder 3,and apply the division lemma to get

7 = 3 x 2 + 1

We consider the new divisor 3 and the new remainder 1,and apply the division lemma to get

3 = 1 x 3 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 347 and 560 is 1

Notice that 1 = HCF(3,1) = HCF(7,3) = HCF(24,7) = HCF(55,24) = HCF(79,55) = HCF(134,79) = HCF(213,134) = HCF(347,213) = HCF(560,347) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 819 > 1, we apply the division lemma to 819 and 1, to get

819 = 1 x 819 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 1 and 819 is 1

Notice that 1 = HCF(819,1) .

HCF using Euclid's Algorithm Calculation Examples

Here are some samples of HCF using Euclid's Algorithm calculations.

Frequently Asked Questions on HCF of 347, 560, 819 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 347, 560, 819?

Answer: HCF of 347, 560, 819 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 347, 560, 819 using Euclid's Algorithm?

Answer: For arbitrary numbers 347, 560, 819 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.