Highest Common Factor of 349, 894, 675 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 349, 894, 675 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 349, 894, 675 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 349, 894, 675 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 349, 894, 675 is 1.

HCF(349, 894, 675) = 1

HCF of 349, 894, 675 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 349, 894, 675 is 1.

Highest Common Factor of 349,894,675 using Euclid's algorithm

Highest Common Factor of 349,894,675 is 1

Step 1: Since 894 > 349, we apply the division lemma to 894 and 349, to get

894 = 349 x 2 + 196

Step 2: Since the reminder 349 ≠ 0, we apply division lemma to 196 and 349, to get

349 = 196 x 1 + 153

Step 3: We consider the new divisor 196 and the new remainder 153, and apply the division lemma to get

196 = 153 x 1 + 43

We consider the new divisor 153 and the new remainder 43,and apply the division lemma to get

153 = 43 x 3 + 24

We consider the new divisor 43 and the new remainder 24,and apply the division lemma to get

43 = 24 x 1 + 19

We consider the new divisor 24 and the new remainder 19,and apply the division lemma to get

24 = 19 x 1 + 5

We consider the new divisor 19 and the new remainder 5,and apply the division lemma to get

19 = 5 x 3 + 4

We consider the new divisor 5 and the new remainder 4,and apply the division lemma to get

5 = 4 x 1 + 1

We consider the new divisor 4 and the new remainder 1,and apply the division lemma to get

4 = 1 x 4 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 349 and 894 is 1

Notice that 1 = HCF(4,1) = HCF(5,4) = HCF(19,5) = HCF(24,19) = HCF(43,24) = HCF(153,43) = HCF(196,153) = HCF(349,196) = HCF(894,349) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 675 > 1, we apply the division lemma to 675 and 1, to get

675 = 1 x 675 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 1 and 675 is 1

Notice that 1 = HCF(675,1) .

HCF using Euclid's Algorithm Calculation Examples

Here are some samples of HCF using Euclid's Algorithm calculations.

Frequently Asked Questions on HCF of 349, 894, 675 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 349, 894, 675?

Answer: HCF of 349, 894, 675 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 349, 894, 675 using Euclid's Algorithm?

Answer: For arbitrary numbers 349, 894, 675 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.