Highest Common Factor of 350, 621, 391 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 350, 621, 391 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 350, 621, 391 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 350, 621, 391 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 350, 621, 391 is 1.

HCF(350, 621, 391) = 1

HCF of 350, 621, 391 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 350, 621, 391 is 1.

Highest Common Factor of 350,621,391 using Euclid's algorithm

Highest Common Factor of 350,621,391 is 1

Step 1: Since 621 > 350, we apply the division lemma to 621 and 350, to get

621 = 350 x 1 + 271

Step 2: Since the reminder 350 ≠ 0, we apply division lemma to 271 and 350, to get

350 = 271 x 1 + 79

Step 3: We consider the new divisor 271 and the new remainder 79, and apply the division lemma to get

271 = 79 x 3 + 34

We consider the new divisor 79 and the new remainder 34,and apply the division lemma to get

79 = 34 x 2 + 11

We consider the new divisor 34 and the new remainder 11,and apply the division lemma to get

34 = 11 x 3 + 1

We consider the new divisor 11 and the new remainder 1,and apply the division lemma to get

11 = 1 x 11 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 350 and 621 is 1

Notice that 1 = HCF(11,1) = HCF(34,11) = HCF(79,34) = HCF(271,79) = HCF(350,271) = HCF(621,350) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 391 > 1, we apply the division lemma to 391 and 1, to get

391 = 1 x 391 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 1 and 391 is 1

Notice that 1 = HCF(391,1) .

HCF using Euclid's Algorithm Calculation Examples

Here are some samples of HCF using Euclid's Algorithm calculations.

Frequently Asked Questions on HCF of 350, 621, 391 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 350, 621, 391?

Answer: HCF of 350, 621, 391 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 350, 621, 391 using Euclid's Algorithm?

Answer: For arbitrary numbers 350, 621, 391 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.