Highest Common Factor of 350, 6460 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 350, 6460 i.e. 10 the largest integer that leaves a remainder zero for all numbers.

HCF of 350, 6460 is 10 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 350, 6460 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 350, 6460 is 10.

HCF(350, 6460) = 10

HCF of 350, 6460 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 350, 6460 is 10.

Highest Common Factor of 350,6460 using Euclid's algorithm

Highest Common Factor of 350,6460 is 10

Step 1: Since 6460 > 350, we apply the division lemma to 6460 and 350, to get

6460 = 350 x 18 + 160

Step 2: Since the reminder 350 ≠ 0, we apply division lemma to 160 and 350, to get

350 = 160 x 2 + 30

Step 3: We consider the new divisor 160 and the new remainder 30, and apply the division lemma to get

160 = 30 x 5 + 10

We consider the new divisor 30 and the new remainder 10, and apply the division lemma to get

30 = 10 x 3 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 10, the HCF of 350 and 6460 is 10

Notice that 10 = HCF(30,10) = HCF(160,30) = HCF(350,160) = HCF(6460,350) .

HCF using Euclid's Algorithm Calculation Examples

Here are some samples of HCF using Euclid's Algorithm calculations.

Frequently Asked Questions on HCF of 350, 6460 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 350, 6460?

Answer: HCF of 350, 6460 is 10 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 350, 6460 using Euclid's Algorithm?

Answer: For arbitrary numbers 350, 6460 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.