Created By : Jatin Gogia
Reviewed By : Rajasekhar Valipishetty
Last Updated : Apr 06, 2023
HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 351, 366, 773 i.e. 1 the largest integer that leaves a remainder zero for all numbers.
HCF of 351, 366, 773 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.
Consider we have numbers 351, 366, 773 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b
Highest common factor (HCF) of 351, 366, 773 is 1.
HCF(351, 366, 773) = 1
Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.
Highest common factor (HCF) of 351, 366, 773 is 1.
Step 1: Since 366 > 351, we apply the division lemma to 366 and 351, to get
366 = 351 x 1 + 15
Step 2: Since the reminder 351 ≠ 0, we apply division lemma to 15 and 351, to get
351 = 15 x 23 + 6
Step 3: We consider the new divisor 15 and the new remainder 6, and apply the division lemma to get
15 = 6 x 2 + 3
We consider the new divisor 6 and the new remainder 3, and apply the division lemma to get
6 = 3 x 2 + 0
The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 3, the HCF of 351 and 366 is 3
Notice that 3 = HCF(6,3) = HCF(15,6) = HCF(351,15) = HCF(366,351) .
We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma
Step 1: Since 773 > 3, we apply the division lemma to 773 and 3, to get
773 = 3 x 257 + 2
Step 2: Since the reminder 3 ≠ 0, we apply division lemma to 2 and 3, to get
3 = 2 x 1 + 1
Step 3: We consider the new divisor 2 and the new remainder 1, and apply the division lemma to get
2 = 1 x 2 + 0
The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 3 and 773 is 1
Notice that 1 = HCF(2,1) = HCF(3,2) = HCF(773,3) .
Here are some samples of HCF using Euclid's Algorithm calculations.
1. What is the Euclid division algorithm?
Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.
2. what is the HCF of 351, 366, 773?
Answer: HCF of 351, 366, 773 is 1 the largest number that divides all the numbers leaving a remainder zero.
3. How to find HCF of 351, 366, 773 using Euclid's Algorithm?
Answer: For arbitrary numbers 351, 366, 773 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.