Highest Common Factor of 351, 432 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 351, 432 i.e. 27 the largest integer that leaves a remainder zero for all numbers.

HCF of 351, 432 is 27 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 351, 432 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 351, 432 is 27.

HCF(351, 432) = 27

HCF of 351, 432 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 351, 432 is 27.

Highest Common Factor of 351,432 using Euclid's algorithm

Highest Common Factor of 351,432 is 27

Step 1: Since 432 > 351, we apply the division lemma to 432 and 351, to get

432 = 351 x 1 + 81

Step 2: Since the reminder 351 ≠ 0, we apply division lemma to 81 and 351, to get

351 = 81 x 4 + 27

Step 3: We consider the new divisor 81 and the new remainder 27, and apply the division lemma to get

81 = 27 x 3 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 27, the HCF of 351 and 432 is 27

Notice that 27 = HCF(81,27) = HCF(351,81) = HCF(432,351) .

HCF using Euclid's Algorithm Calculation Examples

Here are some samples of HCF using Euclid's Algorithm calculations.

Frequently Asked Questions on HCF of 351, 432 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 351, 432?

Answer: HCF of 351, 432 is 27 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 351, 432 using Euclid's Algorithm?

Answer: For arbitrary numbers 351, 432 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.