Highest Common Factor of 355, 930, 97 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 355, 930, 97 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 355, 930, 97 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 355, 930, 97 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 355, 930, 97 is 1.

HCF(355, 930, 97) = 1

HCF of 355, 930, 97 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 355, 930, 97 is 1.

Highest Common Factor of 355,930,97 using Euclid's algorithm

Highest Common Factor of 355,930,97 is 1

Step 1: Since 930 > 355, we apply the division lemma to 930 and 355, to get

930 = 355 x 2 + 220

Step 2: Since the reminder 355 ≠ 0, we apply division lemma to 220 and 355, to get

355 = 220 x 1 + 135

Step 3: We consider the new divisor 220 and the new remainder 135, and apply the division lemma to get

220 = 135 x 1 + 85

We consider the new divisor 135 and the new remainder 85,and apply the division lemma to get

135 = 85 x 1 + 50

We consider the new divisor 85 and the new remainder 50,and apply the division lemma to get

85 = 50 x 1 + 35

We consider the new divisor 50 and the new remainder 35,and apply the division lemma to get

50 = 35 x 1 + 15

We consider the new divisor 35 and the new remainder 15,and apply the division lemma to get

35 = 15 x 2 + 5

We consider the new divisor 15 and the new remainder 5,and apply the division lemma to get

15 = 5 x 3 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 5, the HCF of 355 and 930 is 5

Notice that 5 = HCF(15,5) = HCF(35,15) = HCF(50,35) = HCF(85,50) = HCF(135,85) = HCF(220,135) = HCF(355,220) = HCF(930,355) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 97 > 5, we apply the division lemma to 97 and 5, to get

97 = 5 x 19 + 2

Step 2: Since the reminder 5 ≠ 0, we apply division lemma to 2 and 5, to get

5 = 2 x 2 + 1

Step 3: We consider the new divisor 2 and the new remainder 1, and apply the division lemma to get

2 = 1 x 2 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 5 and 97 is 1

Notice that 1 = HCF(2,1) = HCF(5,2) = HCF(97,5) .

HCF using Euclid's Algorithm Calculation Examples

Here are some samples of HCF using Euclid's Algorithm calculations.

Frequently Asked Questions on HCF of 355, 930, 97 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 355, 930, 97?

Answer: HCF of 355, 930, 97 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 355, 930, 97 using Euclid's Algorithm?

Answer: For arbitrary numbers 355, 930, 97 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.