Created By : Jatin Gogia
Reviewed By : Rajasekhar Valipishetty
Last Updated : Apr 06, 2023
HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 356, 47561 i.e. 1 the largest integer that leaves a remainder zero for all numbers.
HCF of 356, 47561 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.
Consider we have numbers 356, 47561 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b
Highest common factor (HCF) of 356, 47561 is 1.
HCF(356, 47561) = 1
Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.
Highest common factor (HCF) of 356, 47561 is 1.
Step 1: Since 47561 > 356, we apply the division lemma to 47561 and 356, to get
47561 = 356 x 133 + 213
Step 2: Since the reminder 356 ≠ 0, we apply division lemma to 213 and 356, to get
356 = 213 x 1 + 143
Step 3: We consider the new divisor 213 and the new remainder 143, and apply the division lemma to get
213 = 143 x 1 + 70
We consider the new divisor 143 and the new remainder 70,and apply the division lemma to get
143 = 70 x 2 + 3
We consider the new divisor 70 and the new remainder 3,and apply the division lemma to get
70 = 3 x 23 + 1
We consider the new divisor 3 and the new remainder 1,and apply the division lemma to get
3 = 1 x 3 + 0
The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 356 and 47561 is 1
Notice that 1 = HCF(3,1) = HCF(70,3) = HCF(143,70) = HCF(213,143) = HCF(356,213) = HCF(47561,356) .
Here are some samples of HCF using Euclid's Algorithm calculations.
1. What is the Euclid division algorithm?
Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.
2. what is the HCF of 356, 47561?
Answer: HCF of 356, 47561 is 1 the largest number that divides all the numbers leaving a remainder zero.
3. How to find HCF of 356, 47561 using Euclid's Algorithm?
Answer: For arbitrary numbers 356, 47561 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.