Highest Common Factor of 356, 578, 131 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 356, 578, 131 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 356, 578, 131 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 356, 578, 131 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 356, 578, 131 is 1.

HCF(356, 578, 131) = 1

HCF of 356, 578, 131 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 356, 578, 131 is 1.

Highest Common Factor of 356,578,131 using Euclid's algorithm

Highest Common Factor of 356,578,131 is 1

Step 1: Since 578 > 356, we apply the division lemma to 578 and 356, to get

578 = 356 x 1 + 222

Step 2: Since the reminder 356 ≠ 0, we apply division lemma to 222 and 356, to get

356 = 222 x 1 + 134

Step 3: We consider the new divisor 222 and the new remainder 134, and apply the division lemma to get

222 = 134 x 1 + 88

We consider the new divisor 134 and the new remainder 88,and apply the division lemma to get

134 = 88 x 1 + 46

We consider the new divisor 88 and the new remainder 46,and apply the division lemma to get

88 = 46 x 1 + 42

We consider the new divisor 46 and the new remainder 42,and apply the division lemma to get

46 = 42 x 1 + 4

We consider the new divisor 42 and the new remainder 4,and apply the division lemma to get

42 = 4 x 10 + 2

We consider the new divisor 4 and the new remainder 2,and apply the division lemma to get

4 = 2 x 2 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 2, the HCF of 356 and 578 is 2

Notice that 2 = HCF(4,2) = HCF(42,4) = HCF(46,42) = HCF(88,46) = HCF(134,88) = HCF(222,134) = HCF(356,222) = HCF(578,356) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 131 > 2, we apply the division lemma to 131 and 2, to get

131 = 2 x 65 + 1

Step 2: Since the reminder 2 ≠ 0, we apply division lemma to 1 and 2, to get

2 = 1 x 2 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 2 and 131 is 1

Notice that 1 = HCF(2,1) = HCF(131,2) .

HCF using Euclid's Algorithm Calculation Examples

Here are some samples of HCF using Euclid's Algorithm calculations.

Frequently Asked Questions on HCF of 356, 578, 131 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 356, 578, 131?

Answer: HCF of 356, 578, 131 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 356, 578, 131 using Euclid's Algorithm?

Answer: For arbitrary numbers 356, 578, 131 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.