Highest Common Factor of 356, 587 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 356, 587 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 356, 587 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 356, 587 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 356, 587 is 1.

HCF(356, 587) = 1

HCF of 356, 587 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 356, 587 is 1.

Highest Common Factor of 356,587 using Euclid's algorithm

Highest Common Factor of 356,587 is 1

Step 1: Since 587 > 356, we apply the division lemma to 587 and 356, to get

587 = 356 x 1 + 231

Step 2: Since the reminder 356 ≠ 0, we apply division lemma to 231 and 356, to get

356 = 231 x 1 + 125

Step 3: We consider the new divisor 231 and the new remainder 125, and apply the division lemma to get

231 = 125 x 1 + 106

We consider the new divisor 125 and the new remainder 106,and apply the division lemma to get

125 = 106 x 1 + 19

We consider the new divisor 106 and the new remainder 19,and apply the division lemma to get

106 = 19 x 5 + 11

We consider the new divisor 19 and the new remainder 11,and apply the division lemma to get

19 = 11 x 1 + 8

We consider the new divisor 11 and the new remainder 8,and apply the division lemma to get

11 = 8 x 1 + 3

We consider the new divisor 8 and the new remainder 3,and apply the division lemma to get

8 = 3 x 2 + 2

We consider the new divisor 3 and the new remainder 2,and apply the division lemma to get

3 = 2 x 1 + 1

We consider the new divisor 2 and the new remainder 1,and apply the division lemma to get

2 = 1 x 2 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 356 and 587 is 1

Notice that 1 = HCF(2,1) = HCF(3,2) = HCF(8,3) = HCF(11,8) = HCF(19,11) = HCF(106,19) = HCF(125,106) = HCF(231,125) = HCF(356,231) = HCF(587,356) .

HCF using Euclid's Algorithm Calculation Examples

Here are some samples of HCF using Euclid's Algorithm calculations.

Frequently Asked Questions on HCF of 356, 587 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 356, 587?

Answer: HCF of 356, 587 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 356, 587 using Euclid's Algorithm?

Answer: For arbitrary numbers 356, 587 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.