Highest Common Factor of 362, 917, 574 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 362, 917, 574 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 362, 917, 574 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 362, 917, 574 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 362, 917, 574 is 1.

HCF(362, 917, 574) = 1

HCF of 362, 917, 574 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 362, 917, 574 is 1.

Highest Common Factor of 362,917,574 using Euclid's algorithm

Highest Common Factor of 362,917,574 is 1

Step 1: Since 917 > 362, we apply the division lemma to 917 and 362, to get

917 = 362 x 2 + 193

Step 2: Since the reminder 362 ≠ 0, we apply division lemma to 193 and 362, to get

362 = 193 x 1 + 169

Step 3: We consider the new divisor 193 and the new remainder 169, and apply the division lemma to get

193 = 169 x 1 + 24

We consider the new divisor 169 and the new remainder 24,and apply the division lemma to get

169 = 24 x 7 + 1

We consider the new divisor 24 and the new remainder 1,and apply the division lemma to get

24 = 1 x 24 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 362 and 917 is 1

Notice that 1 = HCF(24,1) = HCF(169,24) = HCF(193,169) = HCF(362,193) = HCF(917,362) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 574 > 1, we apply the division lemma to 574 and 1, to get

574 = 1 x 574 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 1 and 574 is 1

Notice that 1 = HCF(574,1) .

HCF using Euclid's Algorithm Calculation Examples

Here are some samples of HCF using Euclid's Algorithm calculations.

Frequently Asked Questions on HCF of 362, 917, 574 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 362, 917, 574?

Answer: HCF of 362, 917, 574 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 362, 917, 574 using Euclid's Algorithm?

Answer: For arbitrary numbers 362, 917, 574 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.