Highest Common Factor of 364, 433, 368, 606 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 364, 433, 368, 606 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 364, 433, 368, 606 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 364, 433, 368, 606 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 364, 433, 368, 606 is 1.

HCF(364, 433, 368, 606) = 1

HCF of 364, 433, 368, 606 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 364, 433, 368, 606 is 1.

Highest Common Factor of 364,433,368,606 using Euclid's algorithm

Highest Common Factor of 364,433,368,606 is 1

Step 1: Since 433 > 364, we apply the division lemma to 433 and 364, to get

433 = 364 x 1 + 69

Step 2: Since the reminder 364 ≠ 0, we apply division lemma to 69 and 364, to get

364 = 69 x 5 + 19

Step 3: We consider the new divisor 69 and the new remainder 19, and apply the division lemma to get

69 = 19 x 3 + 12

We consider the new divisor 19 and the new remainder 12,and apply the division lemma to get

19 = 12 x 1 + 7

We consider the new divisor 12 and the new remainder 7,and apply the division lemma to get

12 = 7 x 1 + 5

We consider the new divisor 7 and the new remainder 5,and apply the division lemma to get

7 = 5 x 1 + 2

We consider the new divisor 5 and the new remainder 2,and apply the division lemma to get

5 = 2 x 2 + 1

We consider the new divisor 2 and the new remainder 1,and apply the division lemma to get

2 = 1 x 2 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 364 and 433 is 1

Notice that 1 = HCF(2,1) = HCF(5,2) = HCF(7,5) = HCF(12,7) = HCF(19,12) = HCF(69,19) = HCF(364,69) = HCF(433,364) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 368 > 1, we apply the division lemma to 368 and 1, to get

368 = 1 x 368 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 1 and 368 is 1

Notice that 1 = HCF(368,1) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 606 > 1, we apply the division lemma to 606 and 1, to get

606 = 1 x 606 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 1 and 606 is 1

Notice that 1 = HCF(606,1) .

HCF using Euclid's Algorithm Calculation Examples

Frequently Asked Questions on HCF of 364, 433, 368, 606 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 364, 433, 368, 606?

Answer: HCF of 364, 433, 368, 606 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 364, 433, 368, 606 using Euclid's Algorithm?

Answer: For arbitrary numbers 364, 433, 368, 606 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.