Highest Common Factor of 364, 593, 416 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 364, 593, 416 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 364, 593, 416 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 364, 593, 416 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 364, 593, 416 is 1.

HCF(364, 593, 416) = 1

HCF of 364, 593, 416 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 364, 593, 416 is 1.

Highest Common Factor of 364,593,416 using Euclid's algorithm

Highest Common Factor of 364,593,416 is 1

Step 1: Since 593 > 364, we apply the division lemma to 593 and 364, to get

593 = 364 x 1 + 229

Step 2: Since the reminder 364 ≠ 0, we apply division lemma to 229 and 364, to get

364 = 229 x 1 + 135

Step 3: We consider the new divisor 229 and the new remainder 135, and apply the division lemma to get

229 = 135 x 1 + 94

We consider the new divisor 135 and the new remainder 94,and apply the division lemma to get

135 = 94 x 1 + 41

We consider the new divisor 94 and the new remainder 41,and apply the division lemma to get

94 = 41 x 2 + 12

We consider the new divisor 41 and the new remainder 12,and apply the division lemma to get

41 = 12 x 3 + 5

We consider the new divisor 12 and the new remainder 5,and apply the division lemma to get

12 = 5 x 2 + 2

We consider the new divisor 5 and the new remainder 2,and apply the division lemma to get

5 = 2 x 2 + 1

We consider the new divisor 2 and the new remainder 1,and apply the division lemma to get

2 = 1 x 2 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 364 and 593 is 1

Notice that 1 = HCF(2,1) = HCF(5,2) = HCF(12,5) = HCF(41,12) = HCF(94,41) = HCF(135,94) = HCF(229,135) = HCF(364,229) = HCF(593,364) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 416 > 1, we apply the division lemma to 416 and 1, to get

416 = 1 x 416 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 1 and 416 is 1

Notice that 1 = HCF(416,1) .

HCF using Euclid's Algorithm Calculation Examples

Here are some samples of HCF using Euclid's Algorithm calculations.

Frequently Asked Questions on HCF of 364, 593, 416 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 364, 593, 416?

Answer: HCF of 364, 593, 416 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 364, 593, 416 using Euclid's Algorithm?

Answer: For arbitrary numbers 364, 593, 416 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.