Created By : Jatin Gogia
Reviewed By : Rajasekhar Valipishetty
Last Updated : Apr 06, 2023
HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 365, 958, 262 i.e. 1 the largest integer that leaves a remainder zero for all numbers.
HCF of 365, 958, 262 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.
Consider we have numbers 365, 958, 262 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b
Highest common factor (HCF) of 365, 958, 262 is 1.
HCF(365, 958, 262) = 1
Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.
Highest common factor (HCF) of 365, 958, 262 is 1.
Step 1: Since 958 > 365, we apply the division lemma to 958 and 365, to get
958 = 365 x 2 + 228
Step 2: Since the reminder 365 ≠ 0, we apply division lemma to 228 and 365, to get
365 = 228 x 1 + 137
Step 3: We consider the new divisor 228 and the new remainder 137, and apply the division lemma to get
228 = 137 x 1 + 91
We consider the new divisor 137 and the new remainder 91,and apply the division lemma to get
137 = 91 x 1 + 46
We consider the new divisor 91 and the new remainder 46,and apply the division lemma to get
91 = 46 x 1 + 45
We consider the new divisor 46 and the new remainder 45,and apply the division lemma to get
46 = 45 x 1 + 1
We consider the new divisor 45 and the new remainder 1,and apply the division lemma to get
45 = 1 x 45 + 0
The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 365 and 958 is 1
Notice that 1 = HCF(45,1) = HCF(46,45) = HCF(91,46) = HCF(137,91) = HCF(228,137) = HCF(365,228) = HCF(958,365) .
We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma
Step 1: Since 262 > 1, we apply the division lemma to 262 and 1, to get
262 = 1 x 262 + 0
The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 1 and 262 is 1
Notice that 1 = HCF(262,1) .
Here are some samples of HCF using Euclid's Algorithm calculations.
1. What is the Euclid division algorithm?
Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.
2. what is the HCF of 365, 958, 262?
Answer: HCF of 365, 958, 262 is 1 the largest number that divides all the numbers leaving a remainder zero.
3. How to find HCF of 365, 958, 262 using Euclid's Algorithm?
Answer: For arbitrary numbers 365, 958, 262 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.