Highest Common Factor of 366, 623 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 366, 623 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 366, 623 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 366, 623 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 366, 623 is 1.

HCF(366, 623) = 1

HCF of 366, 623 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 366, 623 is 1.

Highest Common Factor of 366,623 using Euclid's algorithm

Highest Common Factor of 366,623 is 1

Step 1: Since 623 > 366, we apply the division lemma to 623 and 366, to get

623 = 366 x 1 + 257

Step 2: Since the reminder 366 ≠ 0, we apply division lemma to 257 and 366, to get

366 = 257 x 1 + 109

Step 3: We consider the new divisor 257 and the new remainder 109, and apply the division lemma to get

257 = 109 x 2 + 39

We consider the new divisor 109 and the new remainder 39,and apply the division lemma to get

109 = 39 x 2 + 31

We consider the new divisor 39 and the new remainder 31,and apply the division lemma to get

39 = 31 x 1 + 8

We consider the new divisor 31 and the new remainder 8,and apply the division lemma to get

31 = 8 x 3 + 7

We consider the new divisor 8 and the new remainder 7,and apply the division lemma to get

8 = 7 x 1 + 1

We consider the new divisor 7 and the new remainder 1,and apply the division lemma to get

7 = 1 x 7 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 366 and 623 is 1

Notice that 1 = HCF(7,1) = HCF(8,7) = HCF(31,8) = HCF(39,31) = HCF(109,39) = HCF(257,109) = HCF(366,257) = HCF(623,366) .

HCF using Euclid's Algorithm Calculation Examples

Here are some samples of HCF using Euclid's Algorithm calculations.

Frequently Asked Questions on HCF of 366, 623 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 366, 623?

Answer: HCF of 366, 623 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 366, 623 using Euclid's Algorithm?

Answer: For arbitrary numbers 366, 623 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.