Highest Common Factor of 367, 214, 126, 268 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 367, 214, 126, 268 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 367, 214, 126, 268 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 367, 214, 126, 268 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 367, 214, 126, 268 is 1.

HCF(367, 214, 126, 268) = 1

HCF of 367, 214, 126, 268 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 367, 214, 126, 268 is 1.

Highest Common Factor of 367,214,126,268 using Euclid's algorithm

Highest Common Factor of 367,214,126,268 is 1

Step 1: Since 367 > 214, we apply the division lemma to 367 and 214, to get

367 = 214 x 1 + 153

Step 2: Since the reminder 214 ≠ 0, we apply division lemma to 153 and 214, to get

214 = 153 x 1 + 61

Step 3: We consider the new divisor 153 and the new remainder 61, and apply the division lemma to get

153 = 61 x 2 + 31

We consider the new divisor 61 and the new remainder 31,and apply the division lemma to get

61 = 31 x 1 + 30

We consider the new divisor 31 and the new remainder 30,and apply the division lemma to get

31 = 30 x 1 + 1

We consider the new divisor 30 and the new remainder 1,and apply the division lemma to get

30 = 1 x 30 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 367 and 214 is 1

Notice that 1 = HCF(30,1) = HCF(31,30) = HCF(61,31) = HCF(153,61) = HCF(214,153) = HCF(367,214) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 126 > 1, we apply the division lemma to 126 and 1, to get

126 = 1 x 126 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 1 and 126 is 1

Notice that 1 = HCF(126,1) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 268 > 1, we apply the division lemma to 268 and 1, to get

268 = 1 x 268 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 1 and 268 is 1

Notice that 1 = HCF(268,1) .

HCF using Euclid's Algorithm Calculation Examples

Frequently Asked Questions on HCF of 367, 214, 126, 268 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 367, 214, 126, 268?

Answer: HCF of 367, 214, 126, 268 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 367, 214, 126, 268 using Euclid's Algorithm?

Answer: For arbitrary numbers 367, 214, 126, 268 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.