Highest Common Factor of 367, 873, 800, 481 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 367, 873, 800, 481 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 367, 873, 800, 481 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 367, 873, 800, 481 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 367, 873, 800, 481 is 1.

HCF(367, 873, 800, 481) = 1

HCF of 367, 873, 800, 481 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 367, 873, 800, 481 is 1.

Highest Common Factor of 367,873,800,481 using Euclid's algorithm

Highest Common Factor of 367,873,800,481 is 1

Step 1: Since 873 > 367, we apply the division lemma to 873 and 367, to get

873 = 367 x 2 + 139

Step 2: Since the reminder 367 ≠ 0, we apply division lemma to 139 and 367, to get

367 = 139 x 2 + 89

Step 3: We consider the new divisor 139 and the new remainder 89, and apply the division lemma to get

139 = 89 x 1 + 50

We consider the new divisor 89 and the new remainder 50,and apply the division lemma to get

89 = 50 x 1 + 39

We consider the new divisor 50 and the new remainder 39,and apply the division lemma to get

50 = 39 x 1 + 11

We consider the new divisor 39 and the new remainder 11,and apply the division lemma to get

39 = 11 x 3 + 6

We consider the new divisor 11 and the new remainder 6,and apply the division lemma to get

11 = 6 x 1 + 5

We consider the new divisor 6 and the new remainder 5,and apply the division lemma to get

6 = 5 x 1 + 1

We consider the new divisor 5 and the new remainder 1,and apply the division lemma to get

5 = 1 x 5 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 367 and 873 is 1

Notice that 1 = HCF(5,1) = HCF(6,5) = HCF(11,6) = HCF(39,11) = HCF(50,39) = HCF(89,50) = HCF(139,89) = HCF(367,139) = HCF(873,367) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 800 > 1, we apply the division lemma to 800 and 1, to get

800 = 1 x 800 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 1 and 800 is 1

Notice that 1 = HCF(800,1) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 481 > 1, we apply the division lemma to 481 and 1, to get

481 = 1 x 481 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 1 and 481 is 1

Notice that 1 = HCF(481,1) .

HCF using Euclid's Algorithm Calculation Examples

Frequently Asked Questions on HCF of 367, 873, 800, 481 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 367, 873, 800, 481?

Answer: HCF of 367, 873, 800, 481 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 367, 873, 800, 481 using Euclid's Algorithm?

Answer: For arbitrary numbers 367, 873, 800, 481 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.