Highest Common Factor of 368, 605 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 368, 605 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 368, 605 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 368, 605 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 368, 605 is 1.

HCF(368, 605) = 1

HCF of 368, 605 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 368, 605 is 1.

Highest Common Factor of 368,605 using Euclid's algorithm

Highest Common Factor of 368,605 is 1

Step 1: Since 605 > 368, we apply the division lemma to 605 and 368, to get

605 = 368 x 1 + 237

Step 2: Since the reminder 368 ≠ 0, we apply division lemma to 237 and 368, to get

368 = 237 x 1 + 131

Step 3: We consider the new divisor 237 and the new remainder 131, and apply the division lemma to get

237 = 131 x 1 + 106

We consider the new divisor 131 and the new remainder 106,and apply the division lemma to get

131 = 106 x 1 + 25

We consider the new divisor 106 and the new remainder 25,and apply the division lemma to get

106 = 25 x 4 + 6

We consider the new divisor 25 and the new remainder 6,and apply the division lemma to get

25 = 6 x 4 + 1

We consider the new divisor 6 and the new remainder 1,and apply the division lemma to get

6 = 1 x 6 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 368 and 605 is 1

Notice that 1 = HCF(6,1) = HCF(25,6) = HCF(106,25) = HCF(131,106) = HCF(237,131) = HCF(368,237) = HCF(605,368) .

HCF using Euclid's Algorithm Calculation Examples

Here are some samples of HCF using Euclid's Algorithm calculations.

Frequently Asked Questions on HCF of 368, 605 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 368, 605?

Answer: HCF of 368, 605 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 368, 605 using Euclid's Algorithm?

Answer: For arbitrary numbers 368, 605 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.