Highest Common Factor of 37, 89, 34, 843 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 37, 89, 34, 843 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 37, 89, 34, 843 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 37, 89, 34, 843 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 37, 89, 34, 843 is 1.

HCF(37, 89, 34, 843) = 1

HCF of 37, 89, 34, 843 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 37, 89, 34, 843 is 1.

Highest Common Factor of 37,89,34,843 using Euclid's algorithm

Highest Common Factor of 37,89,34,843 is 1

Step 1: Since 89 > 37, we apply the division lemma to 89 and 37, to get

89 = 37 x 2 + 15

Step 2: Since the reminder 37 ≠ 0, we apply division lemma to 15 and 37, to get

37 = 15 x 2 + 7

Step 3: We consider the new divisor 15 and the new remainder 7, and apply the division lemma to get

15 = 7 x 2 + 1

We consider the new divisor 7 and the new remainder 1, and apply the division lemma to get

7 = 1 x 7 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 37 and 89 is 1

Notice that 1 = HCF(7,1) = HCF(15,7) = HCF(37,15) = HCF(89,37) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 34 > 1, we apply the division lemma to 34 and 1, to get

34 = 1 x 34 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 1 and 34 is 1

Notice that 1 = HCF(34,1) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 843 > 1, we apply the division lemma to 843 and 1, to get

843 = 1 x 843 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 1 and 843 is 1

Notice that 1 = HCF(843,1) .

HCF using Euclid's Algorithm Calculation Examples

Here are some samples of HCF using Euclid's Algorithm calculations.

Frequently Asked Questions on HCF of 37, 89, 34, 843 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 37, 89, 34, 843?

Answer: HCF of 37, 89, 34, 843 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 37, 89, 34, 843 using Euclid's Algorithm?

Answer: For arbitrary numbers 37, 89, 34, 843 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.