Highest Common Factor of 372, 56885 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 372, 56885 i.e. 31 the largest integer that leaves a remainder zero for all numbers.

HCF of 372, 56885 is 31 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 372, 56885 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 372, 56885 is 31.

HCF(372, 56885) = 31

HCF of 372, 56885 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 372, 56885 is 31.

Highest Common Factor of 372,56885 using Euclid's algorithm

Highest Common Factor of 372,56885 is 31

Step 1: Since 56885 > 372, we apply the division lemma to 56885 and 372, to get

56885 = 372 x 152 + 341

Step 2: Since the reminder 372 ≠ 0, we apply division lemma to 341 and 372, to get

372 = 341 x 1 + 31

Step 3: We consider the new divisor 341 and the new remainder 31, and apply the division lemma to get

341 = 31 x 11 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 31, the HCF of 372 and 56885 is 31

Notice that 31 = HCF(341,31) = HCF(372,341) = HCF(56885,372) .

HCF using Euclid's Algorithm Calculation Examples

Here are some samples of HCF using Euclid's Algorithm calculations.

Frequently Asked Questions on HCF of 372, 56885 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 372, 56885?

Answer: HCF of 372, 56885 is 31 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 372, 56885 using Euclid's Algorithm?

Answer: For arbitrary numbers 372, 56885 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.