Highest Common Factor of 374, 3927, 4161 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 374, 3927, 4161 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 374, 3927, 4161 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 374, 3927, 4161 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 374, 3927, 4161 is 1.

HCF(374, 3927, 4161) = 1

HCF of 374, 3927, 4161 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 374, 3927, 4161 is 1.

Highest Common Factor of 374,3927,4161 using Euclid's algorithm

Highest Common Factor of 374,3927,4161 is 1

Step 1: Since 3927 > 374, we apply the division lemma to 3927 and 374, to get

3927 = 374 x 10 + 187

Step 2: Since the reminder 374 ≠ 0, we apply division lemma to 187 and 374, to get

374 = 187 x 2 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 187, the HCF of 374 and 3927 is 187

Notice that 187 = HCF(374,187) = HCF(3927,374) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 4161 > 187, we apply the division lemma to 4161 and 187, to get

4161 = 187 x 22 + 47

Step 2: Since the reminder 187 ≠ 0, we apply division lemma to 47 and 187, to get

187 = 47 x 3 + 46

Step 3: We consider the new divisor 47 and the new remainder 46, and apply the division lemma to get

47 = 46 x 1 + 1

We consider the new divisor 46 and the new remainder 1, and apply the division lemma to get

46 = 1 x 46 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 187 and 4161 is 1

Notice that 1 = HCF(46,1) = HCF(47,46) = HCF(187,47) = HCF(4161,187) .

HCF using Euclid's Algorithm Calculation Examples

Here are some samples of HCF using Euclid's Algorithm calculations.

Frequently Asked Questions on HCF of 374, 3927, 4161 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 374, 3927, 4161?

Answer: HCF of 374, 3927, 4161 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 374, 3927, 4161 using Euclid's Algorithm?

Answer: For arbitrary numbers 374, 3927, 4161 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.