Highest Common Factor of 374, 676, 319, 551 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 374, 676, 319, 551 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 374, 676, 319, 551 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 374, 676, 319, 551 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 374, 676, 319, 551 is 1.

HCF(374, 676, 319, 551) = 1

HCF of 374, 676, 319, 551 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 374, 676, 319, 551 is 1.

Highest Common Factor of 374,676,319,551 using Euclid's algorithm

Highest Common Factor of 374,676,319,551 is 1

Step 1: Since 676 > 374, we apply the division lemma to 676 and 374, to get

676 = 374 x 1 + 302

Step 2: Since the reminder 374 ≠ 0, we apply division lemma to 302 and 374, to get

374 = 302 x 1 + 72

Step 3: We consider the new divisor 302 and the new remainder 72, and apply the division lemma to get

302 = 72 x 4 + 14

We consider the new divisor 72 and the new remainder 14,and apply the division lemma to get

72 = 14 x 5 + 2

We consider the new divisor 14 and the new remainder 2,and apply the division lemma to get

14 = 2 x 7 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 2, the HCF of 374 and 676 is 2

Notice that 2 = HCF(14,2) = HCF(72,14) = HCF(302,72) = HCF(374,302) = HCF(676,374) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 319 > 2, we apply the division lemma to 319 and 2, to get

319 = 2 x 159 + 1

Step 2: Since the reminder 2 ≠ 0, we apply division lemma to 1 and 2, to get

2 = 1 x 2 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 2 and 319 is 1

Notice that 1 = HCF(2,1) = HCF(319,2) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 551 > 1, we apply the division lemma to 551 and 1, to get

551 = 1 x 551 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 1 and 551 is 1

Notice that 1 = HCF(551,1) .

HCF using Euclid's Algorithm Calculation Examples

Frequently Asked Questions on HCF of 374, 676, 319, 551 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 374, 676, 319, 551?

Answer: HCF of 374, 676, 319, 551 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 374, 676, 319, 551 using Euclid's Algorithm?

Answer: For arbitrary numbers 374, 676, 319, 551 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.