Highest Common Factor of 375, 950, 885 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 375, 950, 885 i.e. 5 the largest integer that leaves a remainder zero for all numbers.

HCF of 375, 950, 885 is 5 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 375, 950, 885 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 375, 950, 885 is 5.

HCF(375, 950, 885) = 5

HCF of 375, 950, 885 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 375, 950, 885 is 5.

Highest Common Factor of 375,950,885 using Euclid's algorithm

Highest Common Factor of 375,950,885 is 5

Step 1: Since 950 > 375, we apply the division lemma to 950 and 375, to get

950 = 375 x 2 + 200

Step 2: Since the reminder 375 ≠ 0, we apply division lemma to 200 and 375, to get

375 = 200 x 1 + 175

Step 3: We consider the new divisor 200 and the new remainder 175, and apply the division lemma to get

200 = 175 x 1 + 25

We consider the new divisor 175 and the new remainder 25, and apply the division lemma to get

175 = 25 x 7 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 25, the HCF of 375 and 950 is 25

Notice that 25 = HCF(175,25) = HCF(200,175) = HCF(375,200) = HCF(950,375) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 885 > 25, we apply the division lemma to 885 and 25, to get

885 = 25 x 35 + 10

Step 2: Since the reminder 25 ≠ 0, we apply division lemma to 10 and 25, to get

25 = 10 x 2 + 5

Step 3: We consider the new divisor 10 and the new remainder 5, and apply the division lemma to get

10 = 5 x 2 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 5, the HCF of 25 and 885 is 5

Notice that 5 = HCF(10,5) = HCF(25,10) = HCF(885,25) .

HCF using Euclid's Algorithm Calculation Examples

Here are some samples of HCF using Euclid's Algorithm calculations.

Frequently Asked Questions on HCF of 375, 950, 885 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 375, 950, 885?

Answer: HCF of 375, 950, 885 is 5 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 375, 950, 885 using Euclid's Algorithm?

Answer: For arbitrary numbers 375, 950, 885 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.