Created By : Jatin Gogia
Reviewed By : Rajasekhar Valipishetty
Last Updated : Apr 06, 2023
HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 379, 244, 335 i.e. 1 the largest integer that leaves a remainder zero for all numbers.
HCF of 379, 244, 335 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.
Consider we have numbers 379, 244, 335 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b
Highest common factor (HCF) of 379, 244, 335 is 1.
HCF(379, 244, 335) = 1
Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.
Highest common factor (HCF) of 379, 244, 335 is 1.
Step 1: Since 379 > 244, we apply the division lemma to 379 and 244, to get
379 = 244 x 1 + 135
Step 2: Since the reminder 244 ≠ 0, we apply division lemma to 135 and 244, to get
244 = 135 x 1 + 109
Step 3: We consider the new divisor 135 and the new remainder 109, and apply the division lemma to get
135 = 109 x 1 + 26
We consider the new divisor 109 and the new remainder 26,and apply the division lemma to get
109 = 26 x 4 + 5
We consider the new divisor 26 and the new remainder 5,and apply the division lemma to get
26 = 5 x 5 + 1
We consider the new divisor 5 and the new remainder 1,and apply the division lemma to get
5 = 1 x 5 + 0
The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 379 and 244 is 1
Notice that 1 = HCF(5,1) = HCF(26,5) = HCF(109,26) = HCF(135,109) = HCF(244,135) = HCF(379,244) .
We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma
Step 1: Since 335 > 1, we apply the division lemma to 335 and 1, to get
335 = 1 x 335 + 0
The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 1 and 335 is 1
Notice that 1 = HCF(335,1) .
Here are some samples of HCF using Euclid's Algorithm calculations.
1. What is the Euclid division algorithm?
Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.
2. what is the HCF of 379, 244, 335?
Answer: HCF of 379, 244, 335 is 1 the largest number that divides all the numbers leaving a remainder zero.
3. How to find HCF of 379, 244, 335 using Euclid's Algorithm?
Answer: For arbitrary numbers 379, 244, 335 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.