Highest Common Factor of 380, 671, 472 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 380, 671, 472 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 380, 671, 472 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 380, 671, 472 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 380, 671, 472 is 1.

HCF(380, 671, 472) = 1

HCF of 380, 671, 472 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 380, 671, 472 is 1.

Highest Common Factor of 380,671,472 using Euclid's algorithm

Highest Common Factor of 380,671,472 is 1

Step 1: Since 671 > 380, we apply the division lemma to 671 and 380, to get

671 = 380 x 1 + 291

Step 2: Since the reminder 380 ≠ 0, we apply division lemma to 291 and 380, to get

380 = 291 x 1 + 89

Step 3: We consider the new divisor 291 and the new remainder 89, and apply the division lemma to get

291 = 89 x 3 + 24

We consider the new divisor 89 and the new remainder 24,and apply the division lemma to get

89 = 24 x 3 + 17

We consider the new divisor 24 and the new remainder 17,and apply the division lemma to get

24 = 17 x 1 + 7

We consider the new divisor 17 and the new remainder 7,and apply the division lemma to get

17 = 7 x 2 + 3

We consider the new divisor 7 and the new remainder 3,and apply the division lemma to get

7 = 3 x 2 + 1

We consider the new divisor 3 and the new remainder 1,and apply the division lemma to get

3 = 1 x 3 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 380 and 671 is 1

Notice that 1 = HCF(3,1) = HCF(7,3) = HCF(17,7) = HCF(24,17) = HCF(89,24) = HCF(291,89) = HCF(380,291) = HCF(671,380) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 472 > 1, we apply the division lemma to 472 and 1, to get

472 = 1 x 472 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 1 and 472 is 1

Notice that 1 = HCF(472,1) .

HCF using Euclid's Algorithm Calculation Examples

Here are some samples of HCF using Euclid's Algorithm calculations.

Frequently Asked Questions on HCF of 380, 671, 472 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 380, 671, 472?

Answer: HCF of 380, 671, 472 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 380, 671, 472 using Euclid's Algorithm?

Answer: For arbitrary numbers 380, 671, 472 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.