Created By : Jatin Gogia
Reviewed By : Rajasekhar Valipishetty
Last Updated : Apr 06, 2023
HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 3825, 8357 i.e. 1 the largest integer that leaves a remainder zero for all numbers.
HCF of 3825, 8357 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.
Consider we have numbers 3825, 8357 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b
Highest common factor (HCF) of 3825, 8357 is 1.
HCF(3825, 8357) = 1
Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.
Highest common factor (HCF) of 3825, 8357 is 1.
Step 1: Since 8357 > 3825, we apply the division lemma to 8357 and 3825, to get
8357 = 3825 x 2 + 707
Step 2: Since the reminder 3825 ≠ 0, we apply division lemma to 707 and 3825, to get
3825 = 707 x 5 + 290
Step 3: We consider the new divisor 707 and the new remainder 290, and apply the division lemma to get
707 = 290 x 2 + 127
We consider the new divisor 290 and the new remainder 127,and apply the division lemma to get
290 = 127 x 2 + 36
We consider the new divisor 127 and the new remainder 36,and apply the division lemma to get
127 = 36 x 3 + 19
We consider the new divisor 36 and the new remainder 19,and apply the division lemma to get
36 = 19 x 1 + 17
We consider the new divisor 19 and the new remainder 17,and apply the division lemma to get
19 = 17 x 1 + 2
We consider the new divisor 17 and the new remainder 2,and apply the division lemma to get
17 = 2 x 8 + 1
We consider the new divisor 2 and the new remainder 1,and apply the division lemma to get
2 = 1 x 2 + 0
The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 3825 and 8357 is 1
Notice that 1 = HCF(2,1) = HCF(17,2) = HCF(19,17) = HCF(36,19) = HCF(127,36) = HCF(290,127) = HCF(707,290) = HCF(3825,707) = HCF(8357,3825) .
Here are some samples of HCF using Euclid's Algorithm calculations.
1. What is the Euclid division algorithm?
Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.
2. what is the HCF of 3825, 8357?
Answer: HCF of 3825, 8357 is 1 the largest number that divides all the numbers leaving a remainder zero.
3. How to find HCF of 3825, 8357 using Euclid's Algorithm?
Answer: For arbitrary numbers 3825, 8357 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.