Highest Common Factor of 3829, 9318 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 3829, 9318 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 3829, 9318 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 3829, 9318 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 3829, 9318 is 1.

HCF(3829, 9318) = 1

HCF of 3829, 9318 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 3829, 9318 is 1.

Highest Common Factor of 3829,9318 using Euclid's algorithm

Highest Common Factor of 3829,9318 is 1

Step 1: Since 9318 > 3829, we apply the division lemma to 9318 and 3829, to get

9318 = 3829 x 2 + 1660

Step 2: Since the reminder 3829 ≠ 0, we apply division lemma to 1660 and 3829, to get

3829 = 1660 x 2 + 509

Step 3: We consider the new divisor 1660 and the new remainder 509, and apply the division lemma to get

1660 = 509 x 3 + 133

We consider the new divisor 509 and the new remainder 133,and apply the division lemma to get

509 = 133 x 3 + 110

We consider the new divisor 133 and the new remainder 110,and apply the division lemma to get

133 = 110 x 1 + 23

We consider the new divisor 110 and the new remainder 23,and apply the division lemma to get

110 = 23 x 4 + 18

We consider the new divisor 23 and the new remainder 18,and apply the division lemma to get

23 = 18 x 1 + 5

We consider the new divisor 18 and the new remainder 5,and apply the division lemma to get

18 = 5 x 3 + 3

We consider the new divisor 5 and the new remainder 3,and apply the division lemma to get

5 = 3 x 1 + 2

We consider the new divisor 3 and the new remainder 2,and apply the division lemma to get

3 = 2 x 1 + 1

We consider the new divisor 2 and the new remainder 1,and apply the division lemma to get

2 = 1 x 2 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 3829 and 9318 is 1

Notice that 1 = HCF(2,1) = HCF(3,2) = HCF(5,3) = HCF(18,5) = HCF(23,18) = HCF(110,23) = HCF(133,110) = HCF(509,133) = HCF(1660,509) = HCF(3829,1660) = HCF(9318,3829) .

HCF using Euclid's Algorithm Calculation Examples

Here are some samples of HCF using Euclid's Algorithm calculations.

Frequently Asked Questions on HCF of 3829, 9318 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 3829, 9318?

Answer: HCF of 3829, 9318 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 3829, 9318 using Euclid's Algorithm?

Answer: For arbitrary numbers 3829, 9318 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.