Highest Common Factor of 383, 3280 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 383, 3280 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 383, 3280 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 383, 3280 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 383, 3280 is 1.

HCF(383, 3280) = 1

HCF of 383, 3280 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 383, 3280 is 1.

Highest Common Factor of 383,3280 using Euclid's algorithm

Highest Common Factor of 383,3280 is 1

Step 1: Since 3280 > 383, we apply the division lemma to 3280 and 383, to get

3280 = 383 x 8 + 216

Step 2: Since the reminder 383 ≠ 0, we apply division lemma to 216 and 383, to get

383 = 216 x 1 + 167

Step 3: We consider the new divisor 216 and the new remainder 167, and apply the division lemma to get

216 = 167 x 1 + 49

We consider the new divisor 167 and the new remainder 49,and apply the division lemma to get

167 = 49 x 3 + 20

We consider the new divisor 49 and the new remainder 20,and apply the division lemma to get

49 = 20 x 2 + 9

We consider the new divisor 20 and the new remainder 9,and apply the division lemma to get

20 = 9 x 2 + 2

We consider the new divisor 9 and the new remainder 2,and apply the division lemma to get

9 = 2 x 4 + 1

We consider the new divisor 2 and the new remainder 1,and apply the division lemma to get

2 = 1 x 2 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 383 and 3280 is 1

Notice that 1 = HCF(2,1) = HCF(9,2) = HCF(20,9) = HCF(49,20) = HCF(167,49) = HCF(216,167) = HCF(383,216) = HCF(3280,383) .

HCF using Euclid's Algorithm Calculation Examples

Here are some samples of HCF using Euclid's Algorithm calculations.

Frequently Asked Questions on HCF of 383, 3280 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 383, 3280?

Answer: HCF of 383, 3280 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 383, 3280 using Euclid's Algorithm?

Answer: For arbitrary numbers 383, 3280 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.