Highest Common Factor of 3835, 2940 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 3835, 2940 i.e. 5 the largest integer that leaves a remainder zero for all numbers.

HCF of 3835, 2940 is 5 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 3835, 2940 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 3835, 2940 is 5.

HCF(3835, 2940) = 5

HCF of 3835, 2940 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 3835, 2940 is 5.

Highest Common Factor of 3835,2940 using Euclid's algorithm

Highest Common Factor of 3835,2940 is 5

Step 1: Since 3835 > 2940, we apply the division lemma to 3835 and 2940, to get

3835 = 2940 x 1 + 895

Step 2: Since the reminder 2940 ≠ 0, we apply division lemma to 895 and 2940, to get

2940 = 895 x 3 + 255

Step 3: We consider the new divisor 895 and the new remainder 255, and apply the division lemma to get

895 = 255 x 3 + 130

We consider the new divisor 255 and the new remainder 130,and apply the division lemma to get

255 = 130 x 1 + 125

We consider the new divisor 130 and the new remainder 125,and apply the division lemma to get

130 = 125 x 1 + 5

We consider the new divisor 125 and the new remainder 5,and apply the division lemma to get

125 = 5 x 25 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 5, the HCF of 3835 and 2940 is 5

Notice that 5 = HCF(125,5) = HCF(130,125) = HCF(255,130) = HCF(895,255) = HCF(2940,895) = HCF(3835,2940) .

HCF using Euclid's Algorithm Calculation Examples

Here are some samples of HCF using Euclid's Algorithm calculations.

Frequently Asked Questions on HCF of 3835, 2940 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 3835, 2940?

Answer: HCF of 3835, 2940 is 5 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 3835, 2940 using Euclid's Algorithm?

Answer: For arbitrary numbers 3835, 2940 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.